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Abstract
Introduction and objective. The Mycobacterium avium complex (MAC) is a group of acid-resistant bacteria within the 
Mycobacteriaceae. Their cell walls have a specific structure impervious to many disinfectants. Mycobacteria are widespread 
in the environment and can also be found in food. This aim of the article is to review the current state of knowledge about 
the sources of infection, symptoms and treatment of MAC diseases in humans and animals, and summarizes the available 
methods for identifying the bacteria. It pays a special attention to the zoonotic potential of MAC bacteria and possible 
routes of transmission between humans and animals, including possible food-borne routes.  
Brief description of the state of knowledge. MAC bacterial infections occur both in immunocompetent people and 
those with functional predispositions and compromised immunity, particularly during HIV infection or immunosuppressive 
treatment. The incidence of MAC infections in humans is growing, with the most common form of infection being pulmonary 
disease (MTC-PD); however, there are conflicting reports on the role of Mycobacterium avium paratuberculosis (MAP) in the 
development of Crohn’s disease. MAC bacteria can also attack livestock, household pets, and wild animals. Unfortunately, 
treatment is lengthy and often fails due to microbiological relapse; there is also increasing evidence of MAC bacteria are 
developing multi-drug resistance.  
Conclusions. Although new antibiotics are being created to inhibit the growth and division of Mycobacterium avium, there 
is clearly a need for further research into the virulence factors associated with MAC bacteria. Further studies should also 
examine the role of MAP in the etiopathogenesis of Crohn’s disease.
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INTRODUCTION AND OBJECTIVE

The Mycobacterium avium complex (MAC) is a group of 
slow-growing bacteria of the Mycobacteriaceae, classified as 
MOTT, i.e. Mycobacteria Other Than Tuberculosis. MOTT 
are found globally and are widespread in the environment; 
they are also responsible for opportunistic infections in 
humans, livestock and wild animals. Such non-tuberculous 
mycobacterial diseases present a major threat to public health, 
especially in developed countries [1]. The rapid increase in 
MAC infections worldwide is associated with the growing 
number of immunocompromised patients [2]. In addition, 
humans and animals are subject to a continuous increase 
in environ and milk, as well as in heat-treated animal 
products [4, 5]. In humans, skin contact with MAC bacteria, 
consumption of contaminated food, or even aerosols, can 
result in a range of symptoms, such as lymphadenitis, lung 
infections, and infections of the skin and soft tissue [6].

OBJECTIVE

The aim of this review article is to present the current state 
of knowledge about MAC infections in humans and animals, 
the virulence factors of MAC bacteria and potential sources 
of infection, as well as future research on new drugs. The 
review describes the etiological factors of mycobacteriosis, 
prevalence of these diseases, ways of identification, 
pathogenesis and immunology of infection, clinical signs 
and treatment in both humans and animals. A summary of 
the most important information and current trends in this 
area is also presented.

STATE OF KNOWLEDGE

Etiological factor. Mycobacteria are gram-positive acid-
resistant bacilli capable of surviving in host phagolysosomes. 
The Mycobacterium genus demonstrate hydrophobicity, 
impermeability, and slow growth; they are also resistant to 
disinfectants and antibiotics, which has been attributed to the 
presence of a lipid-rich outer membrane enriched with long-
chain mycolic acids [7]. Over 180 species of mycobacteria 
have been identified to-date [8]. The genus Mycobacterium 
includes Mycobacterium tuberculosis complex (MTC), 
M.  leprae and no-tuberculous mycobacteria (NTM) [9], 
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including MAC, which are widespread in the environment. 
Historically, the MAC consisted of two species: M. avium and 
M. intracellulare. This division was based on pathogenicity in 
birds, with M. avium being pathogenic and M. intracellulare 
non-virulent. However, in September 2018, a new taxonomic 
division was proposed, comprising Mycobacterium avium, 
M.  intracellulare, M.  bouchedurhonense, M.  chimaera, 
M.  colombiense, M.  ituriense, M.  lepraemurium, 
M.  marseillense, M.  paraintracellulare, M.  scrofulaceum, 
M. timonense, M. lukis, and M. yongonense [10].

The most clinically-important subspecies of M.  avium 
are believed to be M.  avium subsp. hominissuis (MAH), 
M. avium subsp. paratuberculosis (MAP), M. avium subsp. 
avium (MAA) and M. avium subsp. silvaticum (MAS), and 
Mycobacterium avium intracellulare (MAI). Of these, MAH, 
a ubiquitous environmental saprophyte, causes chronic lung 
disease and is an etiological agent of lymphadenitis in pigs. 
MAH also has a wide range of hosts: cases of disseminated 
MAH infection have been described in other mammals, 
including dogs, cats, cattle, goats, domestic rabbits, cervidae 
and horses [11, 12, 13, 14]. MAA and MAS are most often 
isolated from birds, in which their symptoms and course 
resemble tuberculosis [3]. MAP is responsible for Johne’s 
disease, which mainly affects ruminants. M. chimaera has 
also been isolated from patients after heart valve surgery, 
where it caused infections at the site of surgery, as well as 
endocarditis, both with a high mortality rate [15].

Prevalence. The majority of MAC species are found in 
natural waters, water supply systems, and soils [16, 17, 18], 
as well as in raw [19], cooked and fermented meat products 
[4], pasteurized milk [20] or other dairy products [21]. Fresh 
or frozen fruit and vegetables can also be a source of infection 
[22]. NTMs are oligotrophs that are capable of growing in low 
carbon environments, and thus surviving in nutrient-poor 
environments. In addition, thanks to their oligotrophicity 
and capacity for biofilm production, the bacteria can grow 
in drinking water distribution systems and water supply 
networks [7]. This can pose a serious threat: humans can 
become infected by inhaling aerosols containing NTMs in 
the shower or in the swimmimg pool [23]. Interestingly, MAC 
can persist in amoebas: wild amoebas can provide an ideal 
environment for bacteria to multiply, and can promote their 
persistence in macrophages [3, 24, 25].

Identification. Microbiological identification involves mainly 
isolation and culture of the bacteria on selective media in 
conventional or automatic systems. Conventional approaches 
include the use of Löwenstein-Jensen (with malachite green), 
Ogawa (with sodium glutamate) and Stonebrink (sodium 
pyruvate) media. Bacterial growth lasts from four to twelve 
weeks and the results are based on visual evaluation [26]. 
Automatic systems (Bactec MGIT 960, Bactec 460 Tb) [27, 
28] automatically record the growth of mycobacteria using 
a liquid media with known composition. The presence of 
bacteria is typically confirmed after around five to twelve days 
of culture. After multiplication of the bacteria on the media, 
a common identification method is Ziehl-Neelsen staining 
[29]. The obtained strains can also be used in further, more 
advanced molecular identification methods.

Serological diagnostics are most commonly performed by 
detecting specific antibodies using ELISA (enzyme-linked 
immunosorbent assay). This approach is mainly used to detect 

anti-MAP antibodies [30]. The test is fast and inexpensive, 
has a relatively high sensitivity and specificity, and serum or 
milk samples are easy to obtain [31]. Mycobacterium infection 
can also be detected by the agar gel immunodiffusion test 
(AGID) [32]: the antigen and antibodies diffuse through a 
semi-solid agar medium, forming a precipitation where they 
interact. Typically, a positive result would be indicated by the 
presence of one or more visible lines in the gel. The AGID has 
many advantages: it is inexpensive, easy to perform and does 
not require any specialized auxiliary equipment; however its 
main disadvantage is its relatively low sensitivity [33].

When identifying Mycobacterium species, molecular 
techniques have a higher sensitivity than serological methods 
and the results are typically available within 24–48 hours. 
Molecular methods also offer the further advantage that they 
can be used to directly identify a species or subspecies, and 
to detect drug resistance. Polymerase Chain Reaction (PCR) 
is a fast and practical identification technique that can be 
found in a range of variant, such as Ligase Chain Reaction 
(LCR), Strand Displacement Amplification (SDA), Nucleic 
Acid Sequence – Based Amplification (NASBA) [34], and 
Polymerase Chain Reaction – Restriction Fragments Length 
Polymorphism PCR-RFLP [35]. Commercial linear probe 
assays (LPA) are also used to identify the most commonly-
occurring NTM strains at species or subspecies level [36]. 
Several commercial hybridization probes are available, 
including AccuProbe (Genprobe, San Diego, California), 
INNO-LiPA (Innogenetics, Ghent, Belgium) or GenoType 
Mycobacterium assay (Hain, Lifescience, Germany) [6].

In 2012, a reference genotyping technique was introduced, 
known as MIRU-VNTR (Mycobacterial Interspersed 
Repetitive Units – Variable Numbers of Tandem Repeat), 
based on the analysis of a variable number of tandem 
repetitions, [37]. The Mycobacterium genome contains 
repeated sequences of several to several dozen base pairs, 
the number of which varies between strains of the same 
species. The largest group of VNTR motifs comprises 46–
100 nucleotide MIRU sequences. Of the 41 loci that have 
been identified so far, the 15 with the highest variability are 
used in mycobacteria genotyping. Briefly, in MIRU-VNTR 
analysis, individual loci are amplified using appropriate 
oligonucleotide starter sequences, and the amplicons 
are then separated in agarose gel. The number of MIRU 
motif repetitions calculated for each locus allows the 
results to be catalogued as a 15-digit MIRU-VNTR code 
[38]. Nowadays, MALDI-TOF MS (Matrix-Assisted Laser 
Desorption Ionization) is gaining significance in MAC 
identification: a mass spectrometry-based approach which 
enables identification of microorganisms by comparing their 
protein content with reference spectra in a database [39, 40].

Pathogenesis and immunology of infection. The exact 
pathogenesis of MAC infections and their virulence factors 
are not yet fully understood. However, evidence suggests that 
after passing through the oral cavity, the bacteria interact with 
the gastrointestinal mucosa: in vitro studies have confirmed 
that MAC are able to bind to enterocytes [41]. Such binding 
may be facilitated by the presence of adhesion proteins on the 
surface of the bacteria. After passing through the mechanical 
barriers, mycobacteria are recognized by mononuclear 
macrophages. This interaction leads to phagocytosis and 
the release of reactive metabolites, resulting in the initiation 
of intracellular signaling and the release of cytokines and 
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chemokines; these are responsible for further activation of 
the host immune response and chemotaxis of immune cells. 
MACs employ several mechanisms to survive in adverse 
conditions inside macrophages: they produce agents that 
inhibit the mechanisms associated with an oxidative burst 
(e.g. superoxide dismutase or heat shock proteins), or inhibit 
the fusion of phagosome and lysosome [42].

The recognition of MAC by macrophages mainly acts 
through toll-like receptor 2 (TLR2) [43]; this leads to 
the production of pro-inflammatory cytokines, such as 
interleukins IL-1β, IL-12, IL-18, tumour necrosis factor α 
(TNFα), as well as chemokines such as the C-X-C motif 
chemokine 10 (CXCL-10) [42]. Chemokines and TNFα cause 
taxis of inflammatory cells such as lymphocytes, macrophages 
and dendritic cells, to the inflammation site. The activated 
macrophages, together with the living mycobacteria, migrate 
to lymph nodes; here, the antigen is presented to T helper 
cells by the major histo-compatibility complex class II (MHC 
II). This mechanism induces a specific immune response in 
the host [42]. The ability of macrophages to kill mycobacteria 
is enhanced by the presence of Th1 lymphocytes, which 
secrete IFN-γ and IL-2. In addition, mycobacteria can also 
be recognized by the MHC II independent pathway thanks 
to cluster of differentiation 1 (CD1) [42]. Such recognition 
is specific to γδT lymphocytes, which are highly reactive 
towards mycobacteria and capable of killing them [42].

The immune response develops for four to six weeks after 
infection. Eventually, the bacteria stop multiplying and 
become trapped in granulomas formed as a result of the host 
immune response, thus isolating the pathogen. However, this 
isolation provides the mycobacteria with a niche in which 
they can survive for a long time by modulating the immune 
response. The granuloma consists mainly of blood-derived 
macrophages, epithelial cells (differentiated macrophages) 
and multinuclear giant cells (also known as Langhans giant 
cells), which are surrounded by T lymphocytes and fibroblasts 
[6]. In the middle of the granuloma, a caseous necrosis can 
occur, in which the decayed cells are located.

Pathogenesis and clinical signs in humans. MAC infections 
occur mainly in people with functional predispositions or 
compromised immunity [44]. NTM infections are most 
commonly associated with secondary immunodeficiency 
caused by Human Immunodeficiency Virus and TNF-α 
antagonist therapy, as well as by pulmonary diseases, such 
as cystic fibrosis and chronic obstructive pulmonary disease, 
and by immunosuppressive treatment after transplantation 
or other systemic diseases [6, 45]. Gastro-oesophageal 
reflux disease (GERD), vitamin D deficiency, rheumatoid 
arthritis or low body mass index are also risk factors for 
NTM infection [2]. However, the disease may also develop 
in immunocompetent people [8, 46, 47].

The most frequently detected NTM causing infection in 
humans is MAH [6]. Infection usually occurs by inhalation, 
via contaminated aerosols, or through injured skin [6]. The 
most common form of infection caused by MAC complex 
worldwide is MAC-PD pulmonary disease [48,49], which 
has two clinical forms: fibrous-cavernous and nodular. 
The former is usually associated with lung diseases already 
developing in the body, such as lung tuberculosis or chronic 
obstructive pulmonary disease (COPD); this variant often 
affects older men and demonstrates rapid progression [8]. The 
nodular form is characterized by bilateral bronchial dilatation 

with numerous nodules (Lady Windermere syndrome). It 
usually occurs in non-smoking post-menopausal women 
and is characterized by a slow progression [2, 18]. Clinical 
indications of NTM-PD may be indistinguishable from 
those of tuberculosis or other respiratory diseases, including 
lung cancer. The general symptoms are fatigue, fever, and 
weight loss, while the respiratory symptoms are coughing, 
haemoptysis and dyspnea [49].

MAC is also known to be responsible for a lung disease 
resembling hypersensitivity pneumonitis. It was first 
described at the end of the last century in patients who had 
used rehabilitation pools or spa baths before the symptoms 
occurred. Initially, it is accompanied by flu-like symptoms, 
followed by coughing, dyspnea, fever and night sweats [6]. 
Another relatively common form of disease caused by MAC, 
particularly among children, is peripheral lymphadenopathy. 
The infection most likely occurs through the digestive tract 
[6]. In humans, MAC can also cause gastrointestinal, skin 
and soft tissue infection [2, 50].

There are conflicting reports on the role of MAP in the 
pathogenesis of Crohn’s disease. The fact that Crohn’s disease 
follows a similar course to Johne’s disease, and MAP have 
been isolated from peripheral blood mononuclear cells in 
50–100% of patients with Crohn’s disease [51] suggests that 
MAP may play a role in the origin of the disease [51, 52, 53, 
54]. Crohn’s disease can attack any part of the gastrointestinal 
tract from the mouth to the anus and is often manifested by 
abdominal pain, loss of energy and weight, mouth ulcers 
and joint pain. It is commonly associated with diarrhea 
interspersed with mucus, pus or blood, and about 40% of 
patients need an ileostomy or colostomy [18].

Pathogenesis and clinical signs in animals. MAC bacteria 
are also known to cause disease in many animal species, 
such as dogs [55], cats [56], pigs [42], cattle [57], horses [12] 
and birds [58]. MAC infections are rarely diagnosed in dogs,; 
however, the presence of the disease is generally regarded 
to be associated with immunodeficiency. Some breeds are 
more susceptible to MAC infection, particularly miniature 
schnauzers [59] and bassets [60]. In miniature schnauzers, 
this MAC susceptibility has been attributed to a recessive 
inherited defect in CARD9 adaptive protein [59, 61]. However, 
most of the described cases of canine mycobacteriosis concern 
MAP infections, which can cause long-lasting diarrhea and 
vomiting [62, 63]. Indeed, MAP-specific DNA was found in 
intestinal biopsy in 19% of dogs with chronic vomiting and 
diarrhea, while in dogs without gastrointestinal diseases, 
MAP DNA was not detected [63]. Occasionally, M. avium 
may cause skin lesions in dogs [64]. Given the zoonotic 
potential of a MAC-infected dog, it can pose a health risk to 
humans [59], especially to immunocompromised owners.

In cats, infections with MA complex bacteria occur as 
infrequently as in dogs. The most common clinical signs 
include weight loss, lethargy and anorexia [56, 65]. However, 
one study reported a case of CNS symptoms in a cat during 
empyema-complicated meningitis caused by MAH [13].

In pigs, MAH is the most frequently-isolated pathogen, 
while MAA is rarely detected. Although MAH infection 
usually has a subclinical course in pigs, it is nevertheless 
an economic problem: the pathological lesions are usually 
located in the mesenteric or mandibular lymph nodes 
[66], and these are rejected as unfit for human and animal 
consumption during post-mortem examination, together 
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with other infected tissues. New studies show that M. avium 
complex can occur in lymph nodes that demonstrate no 
visible changes during the veterinary sanitary examination, 
and such carcasses are a potential source of human infection 
[67]; this is particularly the case for minced meat, which can 
contain lymph nodes [4]. M. avium isolates of human origin 
have been found to closely resemble those of pig origin [68], 
suggesting the existence of epidemiological links between 
infections in pigs and infections in humans, or of infections 
from common sources [68]. Pigs commonly become infected 
from sources in the external environment, such as litter, feed, 
water or soil, following contamination with the faeces of wild 
birds or small land mammals [6]; infection typically occurs 
through the alimentary route [42, 69].

The tissue changes caused by MAC bacteria in cattle are 
indistinguishable from those caused by MTC bacteria, which 
may make diagnosis difficult. Granulomatous lesions are 
mainly located in the lymph nodes of the gastrointestinal 
and respiratory systems, although there have been cases 
of systemic disease [57, 70, 71]. Ruminants are most often 
infected by MAP, resulting in chronic inflammation of 
the intestines, called Johne’s disease or paratuberculosis. 
Johne’s disease is a progressive intestinal disease that impairs 
nutrient absorption due to thickening the intestinal wall [72, 
73]. Infected individuals are exhausted by diarrhea, which 
can lead to the death of the animal. MAP infections hence 
lead to big economic losses, especially in dairy herds [72, 73].

Horses are relatively resistant to MAC infections, with 
documented cases referring more to MAA [74] and MAH 
[12] infections. In the course of the disease, horses often suffer 
from diarrhea, mastitis and neck stiffness, as well as dyspnea 
and chronic cough. However, since these symptoms can 
occur in many other diseases, a diagnosis of mycobacterial 
infection is difficult: diagnostics require a biopsy of the 
rectum or distal part of the colon, followed by staining for 
acid-resistant mycobacteria and bacteriological culture of 
granulomatous lesions [74].

The main etiological factor of mycobacteria in birds is 
MAA. In such cases, the bird usually becomes sick first, and 
then acts as the main reservoir of bacteria. Mycobacterioses 
are a common problem in poultry as well as domestic birds 
[58, 75]. The disease is rare in intensive poultry breeding due 
to improved breeding practices. Transmission usually occurs 
by the oral route, and airborne infections are less common 
[76]. Symptoms in birds include emaciation, apathy and 
diarrhea, along with a distinct atrophy of the chest muscles. 
M. avium infection initially involves the intestine, and then 
spreads to the liver, spleen, bone marrow, lungs, air sacs, and 
gonads [77]. Later stages of the disease are characterized by 
the appearance of non-calcified nodules [77]. In some cases, 
skin lesions can also be observed [76]. So far, no evidence of 
direct transmission of atypical mycobacteria between birds 
and humans has been shown, but it cannot be excluded that 
diseased animals may be a source of infection for humans 
in their environment [75]. Studies conducted in the Murcia 
region, Spain, confirm that M. avium plaatstudy was regular 
contact between children and hens [78].

Treatment. The main treatment options for diseases caused 
by MAC bacteria in humans and animals are macrolide 
antibiotics such as clarithromycin or azithromycin [79, 80, 
81]. The 2007 American Thoracic Society/Infectious Diseases 
Society of America (ATS/IDSA) guidelines recommend that 

treatment should be based on macrolides in combination 
with rifampicin and ethambutol. Additionally, streptomycin 
or parenteral amikacin can be administered [8]. Recently 
suggested alternatives include bedaquiline, which has shown 
high efficacy against M. avium, and Liposomal Amikacin 
for Inhalation [82]. In humans and animals, treatment 
of an MAC-caused disease requires prolonged antibiotic 
therapy, i.e. continuing for at least 12 months after negative 
cultures with continuous drug use, and even after successful 
completion, recurrence has been found to recur in 32% – 
48% of cases, usually due to MAC-reinfection [3]. A similar 
treatment protocol based on a combination of ethambutol 
with multiple antimicrobial agents, including rifampicin, 
clarithromycin, moxyfloxacin and doxycycline, is used in 
companion animals [79]; however, cats tend to respond better 
than dogs [79].

Due to the growing incidence of multidrug resistance 
among MAC bacteria [6,75], there is a constant need 
for new antibiotics. Studies have been conducted on the 
inhibitory effects of Ga(NO3)3, GaCl3, gallium meso 
tetraphenylporphyrine (GaTP) and gallium nanoparticles 
(GaNP) on intra- and extra-cellular MAC bacteria [83]. 
MAC bacteria also show resistance to chemical disinfectants 
and ultraviolet radiation [18], mainly due to the structure 
of their cell wall and the impermeability of their cell 
membrane [6]. In addition, MAC bacteria are capable 
of producing enzymes that break down or inactivate 
antimicrobial agents [82]. Another resistance mechanism 
observed in M. avium is the development of biofilms in the 
environment, water distribution systems and the human 
respiratory tract, especially in people with cystic fibrosis or 
bronchial dilatation, which further reduces the effectiveness 
of antimicrobial agents [84]. Moreover, the biofilm allows 
M.  avium to survive traditional disinfection procedures 
and confers resistance against chlorine and acidic pH [82]. 
Biofilm production allows MAC to reduce its interaction 
with the drug by generating an impermeable biofilm layer. 
In addition, mutations in the bacterial genome cause primary 
or induced resistance to therapeutic preparations such as 
macrolides or rifampicin [6].

CONCLUSIONS

M. avium is one of the most commonly-isolated NTM species 
worldwide and a potential zoonotic agent. Although the 
transmission of MAC bacteria from animals to humans 
has not been confirmed, the number of infections caused 
by MAC in both humans and animals has been increasing. 
Such infections are difficult to treat due to the production 
of various resistance factors that protect the bacteria 
from antibiotics. The search continues for new drugs that 
will be effective against MAC infections; however, there is 
a need to identify all the virulence factors associated with 
infection to better understand its mechanism. In addition, 
further research on the etiopathogenesis of Crohn’s disease 
is needed to determine whether MAP plays a role in its 
development.
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